1	i	$3x^2 - 20x + 12$	2	B1 if one error "+c" is an error	2
	ii	y - 64 = -16(x - 2) o.e. eg $y = -16x + 96$	4	M1 for subst $x = 2$ in their y' A1 for $y' = -16$ and B1 for $y = 64$	4
	iii	Factorising $f(x) \equiv (x+2)(x-6)^2$	B3	or B1 for $f(-2) = -8-40-24+72 = 0$ and B1 for $f'(6) = 0$ and	3
		OR Expanding $(x+2)(x-6)^2$	M2 E1	B1dep for $f(6)=0$	
	iv	$\frac{x^4}{4} - \frac{10x^3}{3} + 6x^2 + 72x$ value at (x = 6) ~ value at (x = -2)	B2 M1 A1	-1 for each error Must have integrated $f(x)$	
		341(.3) cao	111		4

Question		on	Answer	Marks	Guidance		
2	(i)		at A $y = 3$	B1			
			$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 4$	B1			
			their $\frac{dy}{dx} = 2 \times 4 - 4$	M1*	must follow from attempt at differentiation		
			grad of normal = $^{-1}/_{\text{their 4}}$	M1dep*			
			$y - 3 = (^{-1}/_4) \times (x - 4)$ oe isw	A1			
			substitution of $y = 0$ and completion to given result with at least 1 correct interim	A1	or substitution of $x = 16$ to obtain $y = 0$	correct interim step may occur before substitution	
			step www	[6]			
2	(ii)		at B, <i>x</i> = 3	B1	may be embedded		
			$F[x] = \frac{x^3}{3} - \frac{4x^2}{2} + 3x$	M1*	condone one error, must be three terms, ignore $+ c$		
			F[4] – F[their 3]	M1* dep	dependent on integration attempted		
			area of triangle = 18 soi	B1		may be embedded in final answer	
			area of region = $19\frac{1}{3}$ oe isw	A1	19.3 or better		
				[5]			

Question		Answer	Marks	Guidance		
3	(i)	sketch of parabola the right way up	B1			
		cutting <i>y</i> -axis at 3 and <i>either x</i> -axis at 1 and 3 only <i>or</i> minimum value at (2, -1)	B1	intersections must be marked on graph or shown worked out next to sketch		
		3 only 07 minimum value at (2, -1)	[2]	shown worked out next to sketch		
3	(ii)	y' = 2x - 4	M1*			
		at A $y' = 6$ at A $y = 8$ soi	A1 B1	must be obtained by calculus		
		y – their 8 = 6(x – 5) or substitution of	M1dep*	implied by $y = 6x - 22$;		
		(5, their 8) into $y = 6x + c$ and evaluation of		M0 if value of y not y used		
		С	[4]			
3	(iii)	-1				
		$m = \frac{-1}{their6}$	M1		M0 if clearly obtained from $x + 6y = 53$	
		y - 8 = -1/6 (x - 5) oe and interim step completing to given answer	A1	NB answer $x + 6y = 53$ given		
		$\frac{53-x}{6} = x^2 - 4x + 3$ oe	M1*		if quadratic in y, then B2 for $y = \frac{325}{36}$	
			. 1		= 9.0277	
		$x^2 - \frac{23}{6}x - \frac{35}{6} = 0$] oe	A1	must be three terms		
		(x-5)(6x+7)	M1dep*	or correct substitution in quadratic formula or correct completion of square		
		$x = -\frac{7}{6}$ oe isw (accept -1.17 or better)	A1	previous M1 implied by correct answer	B2 for $x = -\frac{7}{6}$ oe obtained from	
			[6]		correct value for <i>y</i>	

4	(i) eqn of AB is $y = 3x + 1$ o.e. their " $3x + 1$ " = $4x^2$ (4x + 1) (x - 1) = 0 o.e. so $x = -1/4at C, x = -1/4, y = 4 \times (-1/4)^2 or 3 \times$	M1 M1 M1 A1	or equiv in y: $y = 4\left(\frac{y-1}{3}\right)^2$ or rearranging and deriving roots $y = 4$ or $\frac{1}{4}$ condone verification by showing lhs = rhs o.e.	SC3 for verifying that A, B and C are collinear and that C also lies on the curve SC2 for verifying that A, B and C are collinear by showing that gradient of $AB = AC$ (for example) or showing C lies on AB solely verifying that C lies on the curve scores 0
	at C, $x = -1/4$, $y = 4 \times (-1/4)$ of $5 \times (-1/4) + 1[=1/4$ as required]	AI	or $y = \frac{1}{4}$ implies $x = \pm \frac{1}{4}$ so at C $x = -\frac{1}{4}$	
4	(ii) $y' = 8x$ at A $y' = 8$ eqn of tgt at A y - 4 = their"8"($x - 1$) y = 8x - 4 at C $y' = 8 \times -1/4$ [=-2] $y - \frac{1}{4} = -2(x - (-\frac{1}{4}))$ or other unsimplified equivalent to obtain given result. allow correct verification that (- $\frac{1}{4},\frac{1}{4}$) lies on given line	M1 A1 M1 A1 M1 A1	ft their gradient NB if m = -2 obtained from given answer or only showing that $(-\frac{1}{4}, \frac{1}{4})$ lies on given line $y = -2x - \frac{1}{4}$ then 0 marks.	gradient must follow from evaluation of condone unsimplified versions of $y = 8x - 4$ dependent on award of first M1 SC2 if equation of tangent and curve solved simultaneously to correctly show repeated root
4	(iii) their " $8x - 4$ " = $-2x - \frac{1}{4}$ y = -1 www	M1 A1	or $\frac{y+4}{8} = \frac{y+\frac{1}{4}}{-2}$	o.e. [<i>x</i> = 3/8]

5	$y' = 3x^{-\frac{1}{2}}$	M1	condone if unsimplified	
	$\frac{3}{4}$ when $x = 16$ y = 24 when $x = 16y - their 24 = their \frac{3}{4}(x - 16)y - 24 = \frac{3}{4}(x - 16) o.e.$	A1 B1 M1 A1	dependent on $\frac{dy}{dx}$ used for <i>m</i>	5