1	i	$3 x^{2}-20 x+12$	2	B1 if one error " +c " is an error	
	ii	$\begin{aligned} & y-64=-16(x-2) \text { o.e. } \\ & \text { eg } y=-16 x+96 \end{aligned}$	4	M1 for subst $x=2$ in their y^{\prime} A1 for $y^{\prime}=-16$ and B1 for $y=64$	4
	iii	Factorising $f(x) \equiv(x+2)(x-6)^{2}$ OR Expanding $(x+2)(x-6)^{2}$	$\begin{aligned} & \text { B3 } \\ & \text { M2 } \\ & \text { E1 } \end{aligned}$	or B1 for $f(-2)=-8-40-24+72=0$ and B1 for $f^{\prime}(6)=0$ and B1dep for $f(6)=0$	3
	iv	$\begin{aligned} & \frac{x^{4}}{4}-\frac{10 x^{3}}{3}+6 x^{2}+72 x \\ & \text { value at }(x=6) \sim \text { value at }(x=-2) \\ & 341(.3 . .) \text { cao } \end{aligned}$	$\begin{aligned} & \text { B2 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	-1 for each error Must have integrated $f(x)$	4

Question		Answer	Marks	Guidance	
2	(i)	$\begin{aligned} & \text { at } \mathrm{A} y=3 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=2 x-4 \\ & \text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}=2 \times 4-4 \\ & \text { grad of normal }=-1 / \text { their } 4 \\ & y-3=(-1 / 4) \times(x-4) \text { oe isw } \end{aligned}$ substitution of $y=0$ and completion to given result with at least 1 correct interim step www	$\begin{gathered} \hline \text { B1 } \\ \text { B1 } \\ \text { M1* } \\ \text { M1dep* } \\ \text { A1 } \\ \text { A1 } \\ {[6]} \end{gathered}$	must follow from attempt at differentiation or substitution of $x=16$ to obtain $y=0$	correct interim step may occur before substitution
2	(ii)	at B, $x=3$ $\mathrm{F}[x]=\frac{x^{3}}{3}-\frac{4 x^{2}}{2}+3 x$ F[4] - F[their 3] area of triangle $=18$ soi area of region $=19 \frac{1}{3}$ oe isw	B1 M1* M1* dep B1 A1 [5]	may be embedded condone one error, must be three terms, ignore $+c$ dependent on integration attempted 19.3 or better	may be embedded in final answer

Question		Answer sketch of parabola the right way up cutting y-axis at 3 and either x-axis at 1 and 3 only or minimum value at $(2,-1)$	Marks B1 B1 [2]	Guidance	
3	(i)			intersections must be marked on graph or shown worked out next to sketch	
3	(ii)	$\begin{aligned} & y^{\prime}=2 x-4 \\ & \text { at A } y^{\prime}=6 \\ & \text { at A } y=8 \text { soi } \\ & y-\text { their } 8=6(x-5) \text { or substitution of } \\ & (5 \text {, their } 8) \text { into } y=6 x+c \text { and evaluation of } \\ & c \end{aligned}$	M1* A1 B1 M1dep* [4]	must be obtained by calculus implied by $y=6 x-22$; M0 if value of y^{\prime} not y used	
3	(iii)	$\begin{aligned} & m=\frac{-1}{\text { their } 6} \\ & y-8=-1 / 6(x-5) \text { oe and interim step } \\ & \text { completing to given answer } \\ & \frac{53-x}{6}=x^{2}-4 x+3 \text { oe } \\ & x^{2}-\frac{23}{6} x-\frac{35}{6}[=0] \text { oe } \\ & (x-5)(6 x+7) \\ & x=-\frac{7}{6} \text { oe isw (accept }-1.17 \text { or better) } \end{aligned}$	M1 A1 M1* A1 M1dep* A1 [6]	NB answer $x+6 y=53$ given must be three terms or correct substitution in quadratic formula or correct completion of square previous M1 implied by correct answer	M0 if clearly obtained from $x+6 y=53$ if quadratic in y, then B 2 for $y=\frac{325}{36}$ $=9.0277 \ldots$ B2 for $x=-\frac{7}{6}$ oe obtained from correct value for y

4	(i) eqn of AB is $y=3 x+1$ o.e. their " $3 x+1$ " $=4 x^{2}$ $(4 x+1)(x-1)=0 \text { o.e. so } x=-1 / 4$ at C, $x=-1 / 4, y=4 \times(-1 / 4)^{2}$ or $3 \times$ $(-1 / 4)+1[=1 / 4$ as required]	M1 M1 M1 A1	or equiv in $y: y=4\left(\frac{y-1}{3}\right)^{2}$ or rearranging and deriving roots $y=4$ or $1 / 4$ condone verification by showing lhs = rhs o.e. or $y=1 / 4$ implies $x= \pm 1 / 4$ so at $C x=-1 / 4$	SC3 for verifying that A, B and C are collinear and that C also lies on the curve SC2 for verifying that A, B and C are collinear by showing that gradient of $\mathrm{AB}=\mathrm{AC}$ (for example) or showing C lies on $A B$ solely verifying that C lies on the curve scores 0
4	(ii) $y^{\prime}=8 x$ at A $y^{\prime}=8$ eqn of tgt at A $\begin{aligned} & y-4=\text { their" } 8 \text { " }(x-1) \\ & y=8 x-4 \end{aligned}$ at C $y^{\prime}=8 \times-1 / 4[=-2]$ $y-1 / 4=-2(x-(-1 / 4))$ or other unsimplified equivalent to obtain given result. allow correct verification that $(-1 / 4,1 / 4)$ lies on given line	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A } \end{aligned}$	ft their gradient NB if $m=-2$ obtained from given answer or only showing that $(-1 / 4,1 / 4)$ lies on given line $y=-2 x-1 / 4$ then 0 marks.	gradient must follow from evaluation of condone unsimplified versions of $y=8 x-4$ dependent on award of first M1 SC2 if equation of tangent and curve solved simultaneously to correctly show repeated root
4	(iii) their " $8 x-4$ " $=-2 x-1 / 4$ $y=-1$ www	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	or $\frac{y+4}{8}=\frac{y+\frac{1}{4}}{-2}$	$\begin{aligned} & \text { o.e. } \\ & {[x=3 / 8]} \end{aligned}$

5	$y^{\prime}=3 x^{-\frac{1}{2}}$ M1 condone if unsimplified $3 / 4$ when $x=16$ $y=24$ when $x=16$ $y-$ their $24=$ their $3 / 4(x-16)$ $y-24=3 / 4(x-16)$ o.e.	A1		
	B1			
M1	dependent on $\frac{\mathrm{d} y}{\mathrm{~d} x}$ used for m	5		

